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* Most of users use online search when
they are designing a neural network

 ltis difficult to choose appropriate model
structures and hyperparameter values
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Differences from Previous Work
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Differences from Previous Work

* Prior visualization tools only represent a single model at a time.

» Qur tool represents ~100 models at a time.



Differences from Previous Work

* Prior visualization tools mainly focus on model debugging or training.

* Qur tool supports model design phrase.



Differences from Previous Work

 In addition, our tool allows users to compare and contrast multiple

models and their design choices.



Formative Study

10 Deep Learning Novices
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N1. What are different neural networks for similar tasks and datasets?

N2. | want to quickly find out the structure of a model in a project.

N3. What kinds of “tricks” (e.g., attention, dropout) have other programmers used?
N4. Is my hyperparameter setting similar to those in popular projects?

N5. What kinds of models are often used for specific datasets and tasks?

N6. What are the common hyperparameters set by others?

N7. Do these projects use similar datasets and perform similar tasks as mine?

N8. Is this model runnable? How easy? What is the running environment?

N9. What is the accuracy of the model? How long does it take to train?

N10. How do others pre-process their data before feeding to a model?



Formative Study Design Principles

N1. What are different neural networks for similar tasks and D1. Help users understand the

datasets? _
relevance to their own tasks.

N5. What kinds of models are often used for specific datasets

and tasks?

N7. Do these projects use similar datasets and perform similar

tasks as mine?



Formative Study

N2. | want to quickly find out the structure of a model in a
project.
N3. What kinds of “tricks” (e.g., attention, dropout) have other

programmers used?

N5. What kinds of models are often used for specific datasets

and tasks?

N6. What are the common hyperparameters set by others?

Design Principles

D2. Help users distill high-level

design decisions.



Formative Study Design Principles

N4. Is my hyperparameter setting similar to those in popular

projects?
NS. What kinds of models are often used for specific datasets D3. Help users understand the
e sl commonalities and variations

of design choices.
N7. Do these projects use similar datasets and perform similar

tasks as mine?
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A Within-subjects User Study
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User Study Results

When using ExampleNet:

« Participants inspected 3X more examples



User Study Results

When using ExampleNet:

« Participants inspected 3X more examples

« Participants made more diverse design choices
* layer types (7 vs. 5)

* layer numbers (13 vs. 9.5)

* hyperparameter types (5 vs. 4.5)



Participants made less design mistakes when using ExampleNet.

The Mistakes Participants Made Online Search ExampleNet
Missing Activation Function P4, P6, P8, P9, P10, P11, P12, P14 None
Huge Epochs P3, P4, P5, P/, P8, P15 P3, PS5
Missing Loss Function P1, P2, P3, P8, P10 None
Missing Dropout Rate P1, P4, P8, P3 None
Missing Dense Layer P13, P14 P3
Huge Learning Rate P3 None
Incorrect Layer Sequence Order P12 None




Participants felt more confident and rated ExampleNet as more helpful.
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Main Contributions

C1. A formative study that identifies real needs of DL learners.



Main Contributions

C1. A formative study that identifies real needs of DL learners.

C2. A novel interactive visualization of a large collection of DL models.



Main Contributions

C1. A formative study that identifies real needs of DL learners.

C2. A novel interactive visualization of a large collection of DL models.

C3. A user study that demonstrates the usefulness of ExampleNet.



